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A retrospective pattern within a stock assessment occurs when historical estimates systematically increase or decrease as data are removed
and has been cited as a cause of persistent overfishing. For two case studies, Gulf of Maine cod and New England pollock, we demonstrated
how closed-loop simulation can be used to evaluate the impacts of retrospective patterns with respect to management objectives. Operating
models (OM) representing alternative states of nature were developed and various management procedures (MP) that account for retrospective
patterns in the fitted assessment models were applied. From the cod example, downward adjustment of the catch advice based on Mohn’s rho
was more beneficial over model averaging (MA) to meeting biomass objectives from the cod example and avoiding stock crashes. For pollock,
downward adjustment and MA were robust to meeting biomass objectives at the cost of foregone catch. The ability to discriminate OMs, using
indicators generated from the simulated projections, varied by MP and time for cod, but was poorer overall for pollock. This framework could be
used to identify if retrospective issues generate poor management outcomes and, in some cases, alleviate pressure to identify the single most
credible state of nature.
Keywords: Gulf of Maine cod, harvest control rule, New England pollock, retrospective bias, stock assessment.

Introduction

Stock assessments may display retrospective patterns, where
estimates of stock size, and potentially stock status, apprecia-
bly and systematically change as additional years of data are
added or removed from the model. The presence of a retro-
spective pattern is detected by re-fitting a model with succes-
sive removals of data from the most recent years (we typically
refer to these truncated fits as “retrospective runs” generated
by “peeling” off the data). In a well-behaved situation, one
expects similar estimates in historical years that are shared
among the retrospective runs. A retrospective pattern exists
when estimates diverge among retrospective runs and follow a
systematic pattern, e.g. biomass in a particular year decreases
as more data are peeled from the model (Figure 1).

A frequently used descriptor of the magnitude and direc-
tion of the retrospective pattern is the Mohn’s rho (ρ) statis-
tic, which calculates the mean relative deviation of a model
parameter or quantity, such as spawning stock biomass (SSB),
from the retrospective runs to the value in the full model
(Mohn, 1999). When up to n years of data are peeled, Mohn’s
rho for the terminal year T SSB estimate (ŜSBt, t ′ ) can be cal-
culated as

ρSSB = 1
n

n∑
i = 1

(
ŜSBT−i,T−i

ŜSBT−i,T
− 1

)
, (1)

where the circumflex denotes an estimate, the first subscript
denotes the year of the estimate, and the second subscript de-
notes the terminal year of the model in which the estimate was
made. The magnitude of Mohn’s rho will be larger in models

with larger systematic retrospective patterns, with the sign of
the statistic indicating the direction of the trend, i.e. negative
rho implies larger estimates with more data and positive rho
implies smaller estimates with more data. While Mohn’s rho
can be calculated for multiple quantities from an assessment
model (AM), we exclusively use Mohn’s rho for estimates of
SSB for the terminal year in this paper.

Retrospective patterns observed within a single assessment
can have important implications on management advice over
time. Harvest control rules (HCR) set the catch advice as a
function of the estimated stock size (Deroba and Bence, 2008),
and when there are severe retrospective patterns, historical
catch advice from assessments fit to shorter time-series may
now appear inconsistent with the more recently estimated
stock trends (Figure 1). Consider a situation where succes-
sive stock assessments show that the stock trend is increasing
over time but the magnitude of the estimated biomass persis-
tently decreases with additional years of data (positive Mohn’s
rho; Figure 1c). If successive assessments show that the stock
trend is increasing, then one would expect the catch advice
from a fixed F policy to increase over time. However, the ad-
vice is driven more by the scaling issue generated by the retro-
spective pattern and can remain stable over time (Figure 1d).
Such inconsistencies with the trend in the catch advice rela-
tive to estimated biomass trends can be explained through ret-
rospective patterns among assessments detected in hindsight
(Ralston et al., 2012; Stewart and Martell, 2014; Brooks and
Legault, 2016; Punt et al., 2018).

Assessments with retrospective patterns are viewed as bi-
ased estimators of stock biomass (The term “retrospective
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2 Q. C. Huynh et al.

Figure 1. In total, two examples of the impact of retrospective patterns in biomass from assessments (a) and (c) on the corresponding resulting catch
advice from a hypothetical fixed F harvest control rule (b) and (d), assuming no retrospective pattern in the target F. Points in the left column indicate the
biomass estimate (and the year in which the assessment was performed) used to calculate the catch advice in the harvest control rule. From the 1994
assessment (a), the biomass trend has been decreasing and, from the 2012 assessment (c), an increasing trend is observed, yet the resulting catch
advice in hindsight has remained relatively constant in both cases (b) and (d). Biomass estimates were taken from Figures 4 and 9 of Stewart and
Martell (2014).

bias” is often used to indicate that there is a retrospective trend
in the model. However, it is not related to the concept of statis-
tical bias of a model since the true state of nature is not known.
To avoid confusion, we avoid using this term.). Catches that
followed the prescribed advice may later be perceived to be too
high in the situation with positive Mohn’s rho, because later
assessments will estimate past biomass to be lower than what
was previously estimated (Wiedenmann and Jensen, 2018). In
hindsight, the catch advice should have been lower. Thus, as-
sessments with severe retrospective patterns are typically re-
jected during the peer review process (Punt et al., 2020).

Simulations have suggested that properly specified models
have minor retrospective patterns, i.e. relatively low magni-
tude of Mohn’s rho, while model misspecification tends to gen-
erate larger retrospective patterns. Depending on life history,
Hurtado-Ferro et al. (2015) proposed a rule of thumb where
the magnitude of Mohn’s rho should not exceed 0.20–0.30
in a well-behaved assessment. Implementing time-varying dy-
namics in the AM, such as changes in natural mortality
or survey catchability, is frequently proposed for reducing
retrospective patterns (Mohn, 1999; Cadigan and Ferrell,
2005; Szuwalski et al., 2018; Legault, 2020). Other structural
changes in the model, such as the choice of length- over age-
based selectivity (Stewart and Martell, 2014) and choice of
likelihood weighting coefficients can remove the retrospective
pattern as well (Cadigan and Ferrell, 2005).

Identifying causes of the retrospective patterns is challeng-
ing because there are often multiple hypotheses that can re-
move the patterns (Cadigan and Ferrell, 2005; Legault, 2020).
There is often insufficient data to have incorporated these hy-
potheses in the base model in the first place, so it is difficult to
achieve scientific consensus on the causes underlying the ret-
rospective issues. The retrospective pattern itself also does not
reveal its cause nor does it reveal the direction of the bias of
the model, i.e. incorporating alternative hypotheses or config-
urations to the model to remove the retrospective pattern can

either increase or decrease biomass estimates (Legault, 2009;
Deroba, 2014; ICES, 2020). The selection of one hypothesis
over another often has different implications on the resulting
catch advice.

Various procedures have been proposed to provide manage-
ment advice when there are retrospective patterns. Model av-
eraging (MA) has been proposed to address the retrospective
issue when the terminal year estimate of biomass, averaged
across the ensemble, does not display a retrospective pattern
as severe as those in individual models (Stewart and Hicks,
2018). Catch advice using a MA approach can also use an av-
erage calculated from the values obtained from each model in
an ensemble set (NEFMC, 2020a). Another procedure adjusts
the inputs to the HCR based on the direction and magnitude
of Mohn’s rho (Brooks and Legault, 2016; Miller and Legault,
2017). An SSB estimate that is adjusted for Mohn’s rho (ŜSB

ρ
)

would be

ŜSB
ρ = ŜSB

1 + ρSSB
. (2)

With a model with positive Mohn’s rho, the SSB estimate is
reduced in recognition that such estimates will likely be lower
in future assessments.

Nevertheless, catch advice from assessments with retrospec-
tive patterns has been cited as a contributor to the failure in
achieving management objectives, such as ending overfishing
and achieving optimum yield in New England (Rothschild et
al., 2014). Closed-loop simulation naturally provides a coher-
ent framework to identify how to provide the most robust
management advice in light of the uncertainties with identify-
ing the true state of nature. Alternative hypotheses on the true
state of nature are incorporated into multiple operating mod-
els (OM). Algorithms for providing catch advice from fish-
ery data are formalized in management procedures (MPs) and
tested by projecting each OM forward in time with repeated
applications of MPs on simulated future data (Butterworth
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Simulations and indicators for retrospective patterns 3

Table 1. Summary of frequently used terms, including acronyms and abbreviations. Detailed description of the models is available in the Methods section.

Term Description

General
AM Assessment model
F Instantaneous fishing mortality
M Instantaneous natural mortality
MA Model averaging, a MP that averages the catch advice from two AMs
MP Management procedure
nra Not rho adjusted (MP)
OM Operating model
Pmat Proportion of mature individuals in the survey age composition, used as an OM indicator in the closed-loop simulation
ra Rho adjusted (MP)
rho A metric used to describe the magnitude and direction of the retrospective pattern
SRA Stock Reduction Analysis, the age-structured model used as the AM in MPs and for developing OMs
SSB Spawning stock biomass

Models
M02 Cod AM with constant M = 0.2
MRAMP Cod AM where M has increased to 0.4
MC Cod OM conditioned assuming MCs from observed values (catch is underreported) and constant M = 0.2
IM Cod OM conditioned assuming an increase in natural mortality to 0.45
MCIM Cod OM conditioned with both MCs and an increase in M
Base Pollock AM with dome survey selectivity
FlatSel Pollock AM with flat-topped survey selectivity
SS Pollock OM with more extreme dome survey selectivity compared to Base
SWB Pollock OM with dome survey selectivity; conditioning model upweighted survey likelihoods to remove retrospective

pattern.
SWF Pollock OM with flat-topped survey selectivity; conditioning model upweighted survey likelihoods to remove

retrospective pattern

Performance metrics
PNOF Probability of not overfishing (F < FMSY) in the OM
PB50 Probability of exceeding 50% SSBMSY in the OM

and Punt, 1999). The robustness of MPs is defined through
outcomes in the OMs relative to operationalized management
objectives rather than the performance of assessments.

Closed-loop simulation also provides a framework for iden-
tifying data that can reduce the uncertainty in the set of OMs
(Punt et al., 2016; Carruthers and Hordyk, 2018). Implemen-
tation of an adopted MP over time produces a response in the
system dynamics, and if there are competing proposed states
of nature, then there may be sufficient contrast in the dynam-
ics such that the observed data in the future may offer support
for one state of nature over the others (following the adaptive
management paradigm; Walters and Hilborn, 1976).

In this study, we describe and demonstrate an approach
to making progress when there are retrospective patterns in
stock assessments. Rather than focusing on identifying the
exact cause of the retrospective pattern, which may not be
possible in the short-term, we develop multiple OMs, each of
which representing an alternative state of nature and repli-
cating the retrospective pattern in current assessments. First,
closed-loop simulation identifies whether retrospective pat-
terns are a problem by identifying which states of nature,
if any, are problematic and negatively impact management
performance. Second, OMs generate simulated data, which
can be used to develop “indicators,” the trends and values
of which could be used to identify a problematic state of
nature. We apply this approach using two US groundfish
stocks as case studies, Gulf of Maine cod (Gadus morhua)
and New England pollock (Pollachius virens), the assessments
of which, like those of many other stocks in the region, exhibit
prominent retrospective patterns (Supplementary Figures C.1
and C.2). For demonstration purposes, different causes of

retrospective patterns were considered between the two case
studies.

Methods

In this section, we describe the steps involved in closed-
loop simulation relevant for addressing retrospective patterns.
Within each step, we provide the details of the application to
Gulf of Maine cod and New England pollock. A summary ta-
ble of abbreviations is available in Table 1.

Operating models

OMs characterize the biological and exploitation characteris-
tics of a particular stock, as well as the observation and man-
agement implementation processes. While a single model from
a stock assessment process may be the starting point for an
OM, best practices typically entail incorporating a broader
range of uncertainties (Punt et al., 2016). It is unlikely that a
single model will be able to incorporate all uncertainties as al-
ternative estimates of biomass, recruitment, and stock status
are emergent from different proposed states of nature.

The historical dynamics of the OM were created by fit-
ting the Stock Reduction Analysis (SRA) model using the R
package MSEtool (version 2.0; Huynh et al., 2020). The SRA
is an age-structured model where the fishing mortality rates
(F) are calculated, such that predicted catches match observed
catches. The biological parameters (natural mortality, growth,
and maturity) and data (time series of catch, fishery age com-
positions, indices of abundance, and survey age compositions)
from the assessments were used to fit the SRA (details in
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4 Q. C. Huynh et al.

the Supplementary materials). For both stocks, the Northeast
Fisheries Science Center (NEFSC) spring and the NEFSC fall
bottom trawl surveys were used to index abundance trends,
while the Massachusetts bottom trawl survey is also used for
Gulf of Maine cod.

Hypothesized mechanisms causing retrospective patterns
can be incorporated by modifying the data inputs, model con-
figuration, or both. A state of nature that would explain a ret-
rospective pattern generates a Mohn’s rho close to zero in the
model, a.k.a., the Rose approach (Legault, 2020). For exam-
ple, if catch underreporting were the true underlying cause of
the retrospective pattern, then SRA was fitted by altering the
catch data accordingly. Depending on the mechanism tested,
attention is also needed in the observation dynamics used to
simulate future data. Using the catch example, if underreport-
ing is believed to continue in the future, then the simulated
catch observations should be reduced from the OM values.

For cod, OMs were developed with varying assumptions
regarding either catch, natural mortality (M), or both. Evi-
dence of increased natural mortality is supported by a recent
estimate of M from a tagging study (NEFSC, 2013). Similar
to other New England stocks, catch underreporting and in-
creased natural mortality have been proposed to be the cause
of retrospective patterns (Rossi et al., 2019; Legault, 2020;
Perretti et al., 2020). The three OMs developed here had the
following features:

� Missing Catch (MC): assume M = 0.2 with a 44.4%
catch reporting rate since 2009, i.e. the SRA was fit as-
suming the true catch was 225% of observed values. The
misreporting starts in 2009 and will continue into the
projection period.

� Increased M (IM): assume a linear increase from M = 0.2
to 0.45 during 1989–2007, with M = 0.45 since 2007
and no underestimation of observed catches.

� Both missing catch and increased M (MCIM): assumes a
linear increase from M = 0.2 to 0.4 during 1989–2004,
M = 0.4 since then, along with an 80% catch reporting
rate since 2009, i.e. the SRA was fit with the true catch
at 125% of observed values.

For pollock, alternative configurations regarding the sur-
vey selectivity and likelihood weights were based on observa-
tions that the groundfish surveys do not efficiently catch pol-
lock and that larger fish can outswim the trawl gear (NEFSC,
2010). The three OMs developed here included:

� Survey selectivity (SS): all selectivity at age parameters
are treated identically as in the current AMs, except the
value at the maximum age (9 years) is 0.05, indicating
that very few old fish are caught in the survey.

� Survey weighting with Base (dome) survey selectivity
(SWB): the selectivity at the maximum age is 0.5, and the
retrospective pattern in the SRA was reduced when the
likelihood for the surveys is upweighted with a weighting
coefficient of 8 (instead of 1).

� Survey weighting with flat survey selectivity (SWF): the
selectivity at the maximum age is 1.0, and the likelihood
for the surveys is upweighted with a weighting coefficient
of 10.

The fitted SRA models that generated the OMs for both
case studies had Mohn’s rho less than 0.15 (Supplementary
Figures C.1 and C.2).

Management procedures

MPs formalize the process of conducting a stock assessment
with pre-defined data inputs and model configuration, and cal-
culating the catch advice from a HCR. Here, SRA was used
as the AM and replicated the structure and output of cur-
rent cod and pollock assessments, with similar retrospective
patterns (Supplementary materials, Section A; Supplementary
Figures C.1 and C.2). Cod and pollock each have two AMs
that have been put forth for informing management (NEFSC,
2019). One cod assessment assumes constant natural mortal-
ity (M) of 0.2 (termed “M02”), while another assumes a linear
increase from M = 0.2 to 0.4 during 1989–2004 and has re-
mained high since (termed, “MRAMP”). Both exhibit positive
Mohn’s rho, with the magnitude smaller in MRAMP than in
M02 (Supplementary Figure C.1). For pollock, the two assess-
ments differ in assumptions on the survey selectivity (NEFSC,
2019). In the “Base” model, the survey selectivity is dome-

shaped (0.5 at the maximum age), while in the alternative
model (termed “FlatSel”), survey selectivity is flat-topped (1
at the maximum age). Similar to cod, both pollock models
also exhibit positive Mohn’s rho, with a larger retrospective
pattern in FlatSel compared to Base.

The HCR used for provisioning catch advice in New Eng-
land groundfish stocks (NEFMC, 2020b) is of the general
form

ABC = Ftarget Bref, (3)

where ABC is the Acceptable Biological Catch (catch limit),
Ftarget is the target fishing mortality rate, and Bref is the refer-
ence biomass for the output control rule. A value of Ftarget =
0.75F40%, where F40% is the fishing mortality corresponding
to a spawning potential ratio of 0.40 and is a typical proxy
for the F that produces maximum sustainable yield (FMSY) for
groundfish. The 75% scalar is used as the target for fishing
mortality following US National Standard 1 guidelines of the
Magnuson-Stevens Act (US Department of Commerce, 2016).
The reference biomass is the vulnerable biomass estimated in
the first projection year of the AM (V̂B).

Three methods of providing management advice in light of
retrospective patterns are evaluated here. First, retrospective
patterns are not considered in the MP and model output is
used as-is in the HCR to calculate the catch advice, i.e. no rho
adjustment (“nra”). Second, the inputs to the HCR from the
AM are adjusted based on Mohn’s rho using Equation (2);
this is typically referred to as rho adjustment (“ra”). With rho
adjustment, the reference biomass, following Equation (2), is

Bref = 1
1 + ρSSB

V̂B, (4)

where ρSSB is the Mohn’s rho for spawning biomass calculated
from peeling back up to 7 years of data from the assessment
after each model fit. Third, in lieu of rho adjustment, model
averaging (“MA”) of the catch advice calculated from multi-
ple AMs can be used for management.

For cod, five MPs were tested:

� M02_nra: M02 model was used without rho adjustment
to Bref.

� M02_ra: M02 model with rho adjustment to Bref.
� MRAMP_nra: MRAMP model without adjustment to

Bref.
� MRAMP_ra: MRAMP model with rho adjustment to

Bref.
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Simulations and indicators for retrospective patterns 5

Table 2. Comparison of F40%, the fishing mortality that produces a 40%
spawning potential ratio, among the AMs and OMs. Description of the
models are provided in the Methods and Table 1.

Model F40%

Cod AM
M02 0.17
MRAMP 0.18
Cod OM
MC 0.17
IM 0.18
MCIM 0.18

Pollock AM
Base 0.36
FlatSel 0.37
Pollock OM
SS 0.35
SWB 0.36
SWF 0.38

� MA: ABC is the average of those from M02_nra and
MRAMP_nra.

When the MRAMP model was used, the value of F40% was
calculated with M = 0.2, following current practice (Legault
and Palmer, 2015; NEFSC, 2019; Table 2).

Similarly, the five MPs evaluated for pollock were:

� Base_nra: Base model was used without adjustment to
Bref.

� Base_ra: Base model with rho adjustment to Bref.
� FlatSel_nra: FlatSel model without adjustment to Bref.
� FlatSel_ra: FlatSel with rho adjustment to Bref.
� MA: ABC is the average of those from Base_nra and Flat-

Sel_nra.

For both stocks, an additional reference MP that sets the
fishing mortality rate to 75% FMSY in the OM was imple-
mented. The outcomes from the reference MP reflect perfect
management of the target fishing mortality rate (defined by
policy) with perfect knowledge about each individual state of
nature. This MP is not possible to implement in reality and
used for within-model comparisons of other MPs.

Closed-loop simulation and performance
evaluation

For each OM, 100 simulations with stochastic recruitment de-
viations and observation processes were used and the projec-
tion period was 50 years. The catch advice was updated with
triennial assessments and held constant between assessments.
The closed-loop simulation was executed in the DLMtool R
package version 5.4.3 (Carruthers and Hordyk, 2020).

Performance metrics were calculated to describe the rel-
ative benefits and trade-offs among MPs. In New England,
policy dictates the need to end overfishing and potentially re-
build overfished stocks (NEFMC, 2003). Thus, performance
was evaluated by calculating the probability of not overfish-
ing (PNOF), i.e. the apical fishing mortality is less than the
limit reference point of FMSY, and the probability that the
spawning biomass is above the limit reference point of 50%
SSBMSY (PB50) from the OMs. These probabilities were cal-
culated over all projection years and averaged over all simu-
lations for each MP. These legal, conservation-based perfor-
mance metrics were compared against trade-offs in observed

Table 3. MSY reference points for the projection period in the cod and pol-
lock OMs description of the OMs is provided in the Methods and acronyms
are defined in Table 1.

OM FMSY SSBMSY MSY

Cod
MC (M = 0.20) 0.17 67 829 9 198
IM (M = 0.45) 0.11 8 974 657
MCIM (M = 0.40) 0.15 14 838 1 436

Pollock
SS 0.41 125 149 18 017
SWB 0.42 96 128 14 139
SWF 0.44 79 294 11 909

short-term catches, defined here as the mean catch during the
first decade of the projection period. Long-term behaviour of
the MPs was also characterized by visual comparison of SSB
trajectories during the projection period and the median SSB
during the last decade of the projection.

The value of MSY reference points were conditional on the
OM (Table 3). The stock–recruit parameters α and β were cal-
culated with the unfished spawning biomass per recruit (φ0)
in the first year of the model along with the unfished recruit-
ment and steepness parameters (Miller and Brooks, 2021; see
Supplementary materials). A steepness value of 0.81 was used
for both stocks, in the range of estimates of values for gadoids
from Myers et al. (1999), and the unfished recruitment pa-
rameter was estimated in the SRA. We assumed that α and β

did not change over time because the stock would not have
had sufficient time to evolve in response to a change in M
(Legault and Palmer, 2015). In other words, the dynamics of
the stock in the post-recruit life stage do not affect survival in
the pre-recruit stage described by the stock–recruit relation-
ship (Miller and Brooks, 2021). For the cod OMs, stock re-
silience to fishing decreases with higher M (and lower φ0) in
the projection period. Reference points associated with max-
imum sustainable yield (MSY), including the corresponding
fishing mortality (FMSY) and spawning biomass (SSBMSY), de-
creased with increasing M (Table 3).

OM indicators

The closed-loop feedback mechanism simulates future data
when the OM is projected forward in time. Following adop-
tion of a MP, data should be monitored to ensure that real
future observations are consistent with those simulated in the
closed-loop simulation (Butterworth, 2008). Alternative states
of nature can exhibit differential responses among MPs, with
more contrast in the system dynamics among OMs likely to
produce more contrast in the future data.

We use linear discriminant analysis (LDA) as a predictive
model that classifies the OM (a categorical variable) accord-
ing to a set of indicators (continuous predictor variables). The
term “indicator” refers to any metric that can be calculated
and derived from data, e.g. mean age of age compositions sam-
pled from the fishery or survey, and summarize the state of a
system. The LDAs were fit using indicators generated from
the simulated data as the training set. From the training set,
the sample space (cloud of points) predicts future indicator
values corresponding to various states of nature. Contrast in
the sample space makes it easier to attribute a future state
to an individual OM. If a MP is adopted, future data can be
used to calculate the probability that the observed values are
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6 Q. C. Huynh et al.

consistent with each OM. A schematic of this approach is pro-
vided in Figure 2.

For both case studies, we used the mean proportion of ma-
ture fish in the survey age compositions and Mohn’s rho of the
AM as indicators. The nature of the misspecification relative
to the OM informed the choice of indicators. For cod, per-
sistently high mortality despite reductions in catch could be
attributable to high M and inferred if there are few old, ma-
ture fish due to the truncated age structure. For pollock, dome
selectivity would exclude observations of older, mature ani-
mals. For both, AM Mohn’s rho can account for retrospective
patterns that could persist from continued misspecification.

At each triennial assessment in the projection period, the
natural logarithm of the proportion of mature fish in the simu-
lated survey age compositions was calculated (Pmat). The mean
proportions were calculated using age samples in the NEFSC
spring survey from the 3 years preceding the time of calcula-
tion. Mohn’s rho of the AM was calculated from 7-year peels.
For each MP, the LDA classified OM with the indicators as dis-
criminators and included an interaction effect for Year (model
formula: OM ∼ Pmat × Year + rho × Year). The year covari-
ate was included because the OMs were expected to respond
differently to the catch advice from the MPs over time.

The predictive value of the indicators was evaluated in two
ways. First, leave-one-out cross-validation was used to calcu-
late the classification rate, the probability that the LDA cor-
rectly classified the OM from which the indicator originated
(when individual values are omitted from the training set). The
cross-validation procedure returns the posterior probability
vector for assigning each out-of-sample indicator towards the
three OMs (equal prior probability to assigning to each OM,
i.e. one-third, was assumed). Classification was assigned to the
OM with the highest posterior probability. The classification
rate was calculated for each MP and assessment year. A clas-
sification rate that approaches one-third indicates little ability
of the indicator to differentiate among OMs, i.e. no better than
random selection.

Second, posterior probabilities were predicted across a grid
of values for Pmat and rho for each MP. In this way, indicators
from future data can be used to calculate the posterior proba-
bility that the observed data is consistent with each OM. From
the sampling grid, a contour line was generated to predict the
sampling space of the indicators that would classify with at
least 50% probability to the MC OM (with missing catch)
for cod and the SWF OM (with FlatSel selectivity) for pollock.
With a high classification rate, a diagonal contour line over a
2D scatterplot indicates that both indicators are informative,
while a horizontal or vertical line indicates one of the two in-
dicators is informative. These OMs were chosen to separate
one cause of retrospective trends from the others. For cod, the
MC OM separates missing catches as the sole cause compared
to higher natural mortality. For pollock, the SWF OM sepa-
rates flat-topped selectivity from dome selectivity. The results
of the LDA are shown for the 6th, 12th, and 18th projection
year, corresponding to calendar years 2024, 2030, and 2036,
respectively. These years (in the first half of the projection pe-
riod) were chosen to evaluate the predictive power of the in-
dicators as soon as possible following MP adoption. The LDA
analysis, along with the cross-validation and posterior calcula-
tion procedures, were carried out with the lda and predict.lda
functions from the MASS R package (Venables and Ripley,
2002).

Results

Cod

Compared to what was estimated in the benchmark assess-
ments (M02, MRAMP), the SSB in the cod OMs was higher
during the mid-2000s–mid-2010s (Figure 3a). Higher SSB is
needed to support the presumed higher catches in the MC
scenarios and the observed catches with higher natural mor-
tality. Recruitment in the MC OM was higher than in the
M02 model, but still lower compared to the high M (IM
and MCIM) OMs and the MRAMP model. From the mid-
2010s until 2018 (the last historical year), recruitment and
SSB in the three OMs was lower than in either M02 and
MRAMP.

In the closed-loop simulation, the reference MP
(“75%FMSY”) by definition resulted in no overfishing,
with PNOF > 99% and biomass above SSBMSY across all
three OMs (Figure 4). By the end of the projection period,
the median SSB was above SSBMSY (Figure 5p–r). The other
MPs, using assessments fit to simulated data, frequently did
not reduce short-term catches to those seen in the refer-
ence MP, with overfishing occurring more often than not
(PNOF < 50%; Figure 4). In the MC OM, overfishing
was sufficiently reduced with either the MRAMP_nra or
MRAMP_ra procedures (Figure 4a), such that the stock was
rebuilt above 50% SSBMSY (Figures 4a, 5g and j). Overfishing
was frequently occurring with other MPs in this OM. In the
high M OMs, overfishing was still occurring more often than
not for all MPs (Figure 4).

Rho adjustment substantially reduced overfishing and
improved biomass outcomes (higher PNOF and higher
PB50), based on comparisons of M02_nra vs. M02_ra and
MRAMP_nra vs. MRAMP_ra (Figure 4). In the long run, SSB
was more likely to reach and exceed 50% SSBMSY with rho
adjustment than without (Figure 5; comparing columns 1 to
2 and 3 to 4). While overfishing was slightly more probable
with MRAMP_ra than MRAMP_nra in the MC scenario, the
former reduced F more quickly (Supplementary Figure C.3g
and j). Notably, in the high M OMs, the population crashed
without rho adjustment.

When no rho adjustment was made, performance was
dependent on the underlying OM. Under the MC OM,
MRAMP_nra outperformed M02_nra (Figure 4a), with
MRAMP_nra more likely than M02_nra to rebuild the stock
above 50% SSBMSY (Figure 5a and g). Higher short-term
catches were achieved with MRAMP_nra over M02_nra with
faster reductions in fishing mortality in the former procedure
(Supplementary Figure C.3). The performance of the MA pro-
cedure was in between the other two (Figures 4a and 5m). The
differences among these three MPs were trivial in the high M
OMs with the SSB remaining below 50% SSBMSY (Figures 4b,
c, 5b, c, h, i, n, and o). MRAMP_nra was more successful than
M02_nra and MA in avoid stock crashes in one of these two
OMs, i.e. MCIM.

The MC OM is frequently associated with lower Mohn’s
rho and higher Pmat than in the high M OMs, with the magni-
tude of the indicators is specific to MP (Figure 6). For example,
Mohn’s rho is predicted to be lower in 2030 and 2036 with
MRAMP_nra and MRAMP_ra compared to other MPs, with
negative values predicted for the MC OM. This is contrary to
what is seen in current cod assessments (Supplementary Fig-
ures C.4 and C.5).
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Simulations and indicators for retrospective patterns 7

Figure 2. Schematic of the LDA for identifying alternative states of nature. Indicators from the OM can be used as the training set for the LDA from the
projections of each MP. Following adoption and implementation of a MP, indicators can be calculated from data collected from the real system. This set
of values (denoted as “X” in the lowest panel in the schematic) can be plotted against the sample space of indicators generated in the OM for the
adopted MP. Indicators from each OM, representing an alternative state of nature, will have a separate sample space (denoted in white, grey, and black
ovals for each of three OMs in the lowest panel). Indicators and MPs that are informative about alternative states of nature will visually generate more
contrast in the sample space among OMs. The LDA calculates the probability that a future observation is consistent with each OM and characterizes
whether an MP will have a high predictive power, i.e. high contrast in the indicator sample space, over time.

Figure 3. Historical SSB and recruitment estimated in the SRA for cod (a) and (b) and pollock (c) and (d). OMs and AMs are denoted in solid lines and
dotted lines, respectively. Description of the models are provided in the Methods and Table 1.
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8 Q. C. Huynh et al.

Figure 4. Trade-off between observed short-term catch (mean over the
first decade of the projection period) and the PNOF in the pollock MPs
(labels) and OMs (panels). PB50 is in parentheses. Colours and shapes
indicate the AM used in the MP. Description of the MPs and OMs are in
Methods and Table 1.

There is substantially more overlap in indicators between
the two high M OMs, showing less ability to differentiate be-
tween these two scenarios. This pattern persists through time.
The predictive skill for discriminating OMs was lowest with
the M02_nra and MA MPs with low cross-validation classifi-
cation rates < 50% due to high within-group variance relative
to among group variance. Contour lines of poorly performing
LDA models, e.g. the M02_nra MP in 2030, do not satisfac-
torily characterize the sample space of the indicators (Figure
6b). The prediction skill is higher with M02_ra, MRAMP_nra,
and MRAMP_ra MPs with classification rates between 50 and
80%.

Pollock

Historical SSB in all three pollock OMs were higher to
varying degrees compared to the FlatSel benchmark assess-
ment, with corresponding larger recruitment to support the
larger stock size (Figure 3). In the OM with extreme dome
survey selectivity (SS), the SSB at the end of the historical
period was similar to that in the Base assessment, despite
higher values earlier in the historical period. A large initial

abundance was estimated for the plus group age, which per-
sisted through the 1970s–1980s in this OM. The histori-
cal SSB in the other two OMs (SWB and SWF) was in be-
tween that of the FlatSel and Base assessments. The SSB
trends in the OMs were similar as those in the benchmark
assessments.

As expected, no overfishing occurred with the 75%FMSY

reference MP (Figure 7). Median SSB was fished down over
time to just above SSBMSY (Figure 8p–r), with little probability
of going below 50% SSBMSY (Figure 7). MPs that did not util-
tize rho adjustment (Base_nra, FlatSel_nra, and MA) also had
high probabilities of remaining above 50% SSBMSY, with the
lowest probability of overfishing consistently with Base_nra
(Figure 7). A higher probability of overfishing was associ-
ated with higher short-term catches from a windfall early in
the projection period. FlatSel_nra resulted in biomass levels
well above SSBMSY in all OMs at the cost of lower short-term
catches (Figure 8g–i). Short-term catches and PNOF of the
MA procedure were in between those of Base_nra and Flat-
Sel_nra (Figure 7).

Rho adjustment primarily reduced short-term catches when
comparing Base_nra vs. Base_ra and FlatSel_nra and Flat-
Sel_ra (Figure 7). Biomass levels were already above 50%
SSBMSY without rho adjustment, so there was little scope for
additional gains in PB50 with either rho adjustment or MA
(Figure 8, column 1 vs. 2, and 3 vs. 4). In almost all cases,
overfishing decreased with rho adjustment (Figure 7).

Compared to the cod case study, the ability to discrimi-
nate OMs was more difficult for pollock with cross-validation
classification rates frequently approaching 0.33 in the LDAs
(Figure 9). In the reference MP, there is significant overlap in
Mohn’s rho and Pmat of all three OMs (Figure 9p–r). Oth-
erwise, higher Mohn’s rho and slightly lower Pmat are seen
for the OM with flat selectivity (SWF) with higher prediction
skill earlier in the projection period for Base_nra and Base_ra
(Figure 9a and d; classification rates above 60%). In effect,
higher Mohn’s rho and a larger early windfall in catches are
predicted when there is misspecification in AM with regards
to survey selectivity, with the Base assessment assuming dome
selectivity while there was flat selectivity in the OM. Predic-
tion skill is lower in other years and MPs (60% and lower
classification rates). There is substantial overlap in indicators
for OMs with dome selectivity (SS and SWB), making it is dif-
ficult to distinguish between these two. In these OMs, the Flat-
Sel_nra and FlatSel_ra MPs can generate negative Mohn’s rho,
although the magnitude is relatively minor (absolute value less
than 0.2; Supplementary Figure C.6).

Discussion

Performance of management procedures

Under the presumption that there is problematic model mis-
specification, and facing difficulty in identifying the causal
mechanisms, a closed-loop simulation framework can be used
to quantify the robustness of management options that ac-
count for retrospective patterns. For cod, rho adjustment im-
proved MP performance with respect to fishing mortality and
biomass objectives. This result supports previous work high-
lighting the utility of rho adjustment for improving manage-
ment outcomes (Deroba, 2014; Brooks and Legault, 2016;
Wiedenmann and Jensen, 2019). The extent of the improve-
ment was dependent on the true underlying state of nature,
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Simulations and indicators for retrospective patterns 9

Figure 5. Projected SSB for the cod OMs (rows) under each MP (column). Solid lines indicate the median and the grey region the 90% CI among 100
simulations. Dashed, horizontal lines indicate 50 and 100% SSBMSY (Table 3). Dotted, vertical lines indicate the start of the projection period. Numbers in
the upper right corner of each panel indicates the median SSB/SSBMSY during the last decade of the projection.

Figure 6. Scatter plot of indicators, SSB Mohn’s rho from the AM (y-axis) and proportion mature in the survey age composition (x-axis), used in the
training set of the LDA, by MP (columns), year (rows), and cod OM (colours and shapes). Proportions in the top right of each panel indicate the correct
classification rate from leave-one-out cross-validation of the training set (higher predictive power with higher proportion). Black lines are the contour lines
that delineate at least a 50% probability of classifying a new indicator observation to the MC OM. For the model averaging (“MA”) and 75%FMSY MPs,
the Mohn’s rho from the M02 AM is shown.

most evident when only catch underreporting caused the
retrospective patterns. In this “best case” OM (OM MC), rho
adjustment can reduce overfishing. In the more pessimistic
OMs (high M), stock crashes are avoided but the MPs still
did not sufficiently reduce short-term catch to prevent over-
fishing.

In a more general decision context, the results were clear re-
garding the ranking of MPs. To avoid the worst outcomes, rho
adjustment is recommended, i.e. the M02_ra and MRAMP_ra

MPs, to prevent stock crashes in the high M OMs. Between
these two procedures, the trade-off in decision-making is
whether to use MRAMP_ra with substantially better bio-
logical performance for the MC scenario but slightly worse
biological performance for the high M scenarios. Absolute
performance outcomes may exclude the adoption of the MPs
evaluated here due to legal and policy requirements, but the
framework demonstrates that meaningful progress towards
identifying the most robust management option may still be
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10 Q. C. Huynh et al.

Figure 7. Trade-off between observed short-term catch (mean over the
first decade of the projection period) and the PNOF in the pollock MPs
(labels) and OMs (panels). PB50 is in parentheses. Colours and shapes
indicate the AM used in the MP. Description of the MPs and OMs are in
the Methods and Table 1.

possible despite a lack of consensus regarding the most plau-
sible state of nature.

For pollock, model misspecification was less of a con-
cern and the performance was more consistent among MPs.
Various methods of accounting for retrospective patterns
had good performance with high biomass in all three OMs.
Marginal improvements were observed with further adjust-
ments for the catch advice, but adjustments also did not de-
grade performance. Less yield was observed with some meth-
ods such as use of the FlatSel AM (over Base) and MA. The
choice of best MP for pollock should be based on a trade-off
between an acceptable risk of overfishing and potential fore-
gone catches, which is most evident in OMs SWB and SWF
(Figure 7b and c).

Rho adjustment decreases the catch advice when the sign
of Mohn’s rho is positive and can improve performance of
HCRs. Adjustments when Mohn’s rho is negative can be
viewed as high risk because the catch will be adjusted upward
in the advice, but closed-loop simulation can show when fail-
ure to do so is overly risk averse. We found instances of nega-
tive Mohn’s rho when biomass is high, e.g. with MRAMP_ra

in the cod MC scenario and FlatSel_nra in pollock. However,
high or increasing biomass does not appear to be a sufficient
condition for negative Mohn’s rho in general (see Figure 1c).
Current pollock assessments displayed positive rho despite
high biomass (Figure 3; Supplementary Figure C.6). In New
England, both the Gulf of Maine and Georges Bank stocks
of haddock (Melanogrammus aeglefinus) have seen large in-
creases in biomass in recent years, yet their assessments display
opposite trends in the retrospective pattern (NEFSC, 2019).
Further exploration of the trends in the simulated data could
provide insight on why retrospective patterns can substan-
tially change over time despite no change in the forcing fac-
tors.

Model averaging is increasingly being proposed as a
method for providing management advice (Anderson et al.,
2017; Jardim et al., 2021), especially when there is high un-
certainty about how to best model the true state of nature
(Rossi et al., 2019). While averaging may be proposed in the
hopes that one or several of the models adequately reflects
the true state of nature, and there is reduced variance in pop-
ulation estimates, closed-loop simulation provides a formal
setting for robustness testing. We tested the simplest case of
averaging two models, both of which were misspecified to
some degree relative to the OMs of both stocks. Our simu-
lation results were mixed regarding averaging, and demon-
strate that its marginal value will likely be case-specific. Av-
eraging sometimes returned a middling performance in one
performance measure or another. There was little marginal
benefit for pollock assessments as high biomass could be
achieved without averaging. Of course, averaging will not help
in the most extreme cases, e.g. stock crashes in the high M
cod OMs.

If a set of MPs do not perform satisfactorily, then more ef-
fort can be put into developing alternatives that are robust to
these proposed states of nature. For example, state–space AMs
could be used to detect non-stationarity in various dynam-
ics pertaining to biological parameters (Miller et al., 2018;
Miller and Hyun, 2018; Stock et al., 2021), fleet behaviour
(Nielsen et al., 2021), data reliability (Van Beveren et al., 2017;
Perretti et al., 2020), or some combination thereof (Cadigan,
2016). Such models may allow more flexibility in address-
ing the sources of the retrospective pattern, although care is
needed to ensure that the models are not over-parameterized
and results are not spurious (Hyun and Kim, 2022). The per-
formance of model-based MPs can be compared to empirical,
index-based MPs. Closed-loop simulation can also be used to
evaluate the value of improved catch reporting (Van Beveren
et al., 2020).

More conservative HCRs, e.g. with lower target fishing
mortality rates or ramped HCRs that reduce the target F when
the stock is declining, may also be needed (Wiedenmann and
Jensen, 2019). This is an important consideration for cod, for
which productivity was reduced as natural mortality increased
(Table 3). Adjustments for retrospective patterns alone were
not sufficient in our results and lower fishing mortality tar-
gets would be needed. All modeled pollock scenarios had sim-
ilar productivity assumptions, but varied with regards to stock
size. Performance outcomes for pollock were robust with re-
spect to stock size.

The target fishing mortality rate used in the HCR here was
a per-recruit quantity. Major retrospective trends are typically
not apparent in selectivity estimates used to calculate the tar-
get F. In other management arenas, FMSY may be estimated
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Simulations and indicators for retrospective patterns 11

Figure 8. Projected SSB for the pollock OMs (rows) under each MP (column). Solid lines indicate the median and the grey region the 90% CI among 100
simulations. Dashed, horizontal lines indicate 50 and 100% SSBMSY (Table 3). Dotted, vertical lines indicate the start of the projection period. Numbers in
the upper right corner of each panel indicates the median SSB/SSBMSY during the last decade of the projection.

Figure 9. Scatter plot of indicators, SSB Mohn’s rho and proportion mature in the survey age composition, used in the training set of the LDA, by MP
(columns), year (rows), and pollock OM (colours and shapes). Proportions in the top right of each panel indicate the correct classification rate from
leave-one-out cross-validation of the training set (higher predictive power with higher proportion). Black lines are the contour lines that delineate at least
a 50% probability of classifying a new indicator observation to the SWF OM (with flat SS). For the model averaging (“MA”) and 75%FMSY MPs, the
Mohn’s rho from the Base AM is shown.

from the assessment and used in the HCR. Retrospective pat-
terns may be apparent in the FMSY estimate or the value of
FMSY may be well-determined by fixing or setting informative
priors on the parameters that determine FMSY, e.g. natural
mortality and steepness in age-structured models and the in-
trinsic rate of increase in surplus production models (Mangel
et al., 2013). If these parameters are estimated, then retrospec-
tive trends in FMSY may counteract or exacerbate issues with
the catch advice trends shown in Figure 1.

Our results suggest that no single management option is
likely to work in all situations, but the framework is suffi-
ciently flexible to address retrospective patterns for a range
of conditions that affect stock assessments. This is not to
say that closed-loop simulation is without challenges. In a
comprehensive analysis, a full range of suspected causes of
retrospective patterns should be included in the set of OMs.
For example, juvenile discard mortality of cod in lobster
traps (Beonish and Chen, 2020) and changes in survey
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12 Q. C. Huynh et al.

catchability have also been implicated as drivers of
retrospective patterns in New England groundfish assess-
ments (Legault, 2009; ICES, 2020). Recent poor recruitment
for cod required consideration of the future productivity of
the stock. While future mean recruitment generated in our
simulation was similar or smaller in magnitude to values
estimated in the last decade of the historical period (Sup-
plementary Figure C.7), alternative productivity scenarios,
for example, environmentally driven recruitment (Ianelli et
al., 2011) or depensatory stock–recruit relationships (Lier-
mann and Hilborn, 1997) may need to be considered in the
analysis. If these OMs have disparate implications for the
stock dynamics, then it may be difficult to exclude or weight
these scenarios for evaluating MPs (Butterworth and Punt,
1999).

OM indicators

The LDA provides a formal method to potentially identify al-
ternative states of nature. In the cod example, the indicators
have the potential to differentiate between catch underreport-
ing and increases in natural mortality. With exclusively catch
underreporting, the tested MPs can sufficiently reduce catch to
rebuild the stock to higher levels compared to today. The Pmat

indicator, reflecting the recovering age structure, was higher
here than in the high natural mortality scenarios. Mohn’s rho
tended to reduce with increasing Pmat, as well. It is more dif-
ficult to detect between a mixture of both factors (the MCIM
OM) vs. natural mortality alone (OM IM), because the dif-
ferences in reporting rate and M are smaller between these
two.

For pollock, selectivity influences the proportion of mature
fish in an age sample, but the differences in Pmat among OM
scenarios were minute because the selectivity values differed
primarily in the oldest and often least abundant age class. If
Pmat were an informative indicator, then this approach can
justify continued collection of the survey age compositions.
If it is not, then alternative indicators can be proposed, in-
cluding those using data not currently collected. The analysis
here demonstrated that the ability to identify OMs can be de-
pendent on time and MP. Multiple data types together can
be informative, with univariate indicators developed to de-
crease the complexity associated with high dimensional anal-
yses (Carruthers and Hordyk, 2018).

More broadly, indicators can only identify the OM that is
most consistent with future data, but they cannot confirm the
cause of the retrospective patterns. This type of analysis can
inform priorities on future research given limited time and re-
sources. For cod, low Pmat from future age samples can pro-
vide evidence of the lack of recovery in the stock resulting
from high M, but verification through independent estimates
of natural mortality will be highly desirable.

The indicator approach can provide an intuitive and quan-
titative rationale for identifying the causes underlying retro-
spective patterns, but there are challenges in its application.
Developing an appropriate indicator is a matter of knowing
where to look, which is also related to the OM scenarios
that are developed in the first place. If an appropriate state
of nature is not contained in the OM set, then the proposed
mechanisms behind the indicators may not be valid. Contin-
ued adherence to an adopted MP is also needed. Real-life ap-
plications of MPs have frequently triggered exceptional cir-
cumstance protocols, which may necessitate re-evaluation of

OM specification or ad hoc adjustments to the advice (But-
terworth, 2008). In either case, the system has not behaved
as characterized by the simulation. Indicators would be less
helpful for identifying states of nature and decision-making if
a long period of time is needed to observe the system dynamics
response. Adhering to a MP that provides informative indica-
tors is difficult to justify if the associated monitoring and/or
socioeconomic costs are greater than alternatives (Smith and
Walters, 2011; Walters, 2007).

Conclusion

The OM approach applied here has the benefit that it can eval-
uate various candidate management options under equivalent
testing conditions and rank them with a focus on management
performance. The impacts of potential bias in historical esti-
mates in the AMs, relative to the OMs, on management mov-
ing forward is formally evaluated in closed-loop simulation.
Several states of nature for cod were identified for which var-
ious management approaches fail to meet fishery objectives.
These problematic scenarios are associated with increased nat-
ural mortality that could be identified by low Pmat and high
Mohn’s rho in the future. Management options for pollock,
on the other hand, were more robust to the alternative states
of nature related to stock size (not productivity), and the con-
trast in indicators was not as urgent. Overall, if there is con-
sensus that a suitable range of hypothesized states of nature is
contained within the set of OMs, then the framework demon-
strated here could alleviate the pressure to identify the single
most credible state of nature.
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